2 research outputs found

    Coherent Phonons in Carbon Nanotubes and Graphene

    Full text link
    We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.Comment: 48 pages, 41 figure

    Magnetotransport in type-enriched single-wall carbon nanotube networks

    No full text
    Single-wall carbon nanotubes (SWCNTs) exhibit a wide range of physical phenomena depending on their chirality. Nanotube networks typically contain a broad mixture of chiralities, which prevents an in-depth understanding of SWCNT ensemble properties. In particular, electronic-type mixing (the simultaneous presence of semiconductor and metallic nanotubes) in SWCNT networks remains the single largest hurdle to developing a comprehensive view of ensemble nanotube electrical transport, a critical step toward their use in optoelectronics. Here, we systematically study temperature-dependent magnetoconductivity (MC) in networks of highly enriched semiconductor and metal SWCNT films. In the semiconductor-enriched network, we observe two-dimensional variable-range hopping conduction from 5 to 290 K. Low-temperature MC measurements reveal a large, negative MC from which we determine the wave-function localization length and Fermi energy density of states. In contrast, the metal-enriched film exhibits positive MC that increases with decreasing temperature, a behavior attributed to two-dimensional weak localization. Using this model, we determine the details of the carrier phase coherence and fit the temperature-dependent conductivity. These extensive measurements on type-enriched SWCNT networks provide insights that pave the way for the use of SWCNTs in solid-state devices
    corecore